Photonic Gas Sensor Using a Silicon Strip Waveguide
نویسندگان
چکیده
منابع مشابه
Photonic Gas Sensor Using a Silicon Strip Waveguide
Sensing of gases is a promising area for applications of photonic systems operating in the mid-infrared spectral range. We present an infrared evanescent-field absorption gas sensor based on a silicon strip waveguide, which was specifically designed for CO2 sensing. We discuss finite element simulations that were used to design the strip waveguide and furthermore present experimental data of qu...
متن کاملSilicon Photonic-wire Waveguide Devices
Silicon photonic-wire waveguide is one of the most promising platforms in constructing compact optical devices, since the waveguide can be bent with a radius of less then several microns. Recently, we have demonstrated various optical devices based on silicon photonic-wire waveguides, which include a directional coupler, a tunable optical add-drop multiplexer, and some ultra-compact 1 x N optic...
متن کاملUltra-Small Silicon Photonic Wire Waveguide Devices
Silicon photonic devices based on silicon photonic wire waveguides are especially attractive devices, since they can be ultracompact and low-power consumption. In this paper, we demonstrated various devices fabricated on silicon photonic wire waveguides. They included optical directional couplers, reconfigurable optical add/drop multiplexers, 1 × 2, 1 × 4, 1 × 8 and 4 × 4 optical switches, ring...
متن کاملFabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation.
We have successfully fabricated low-loss silicon-on-oxidized-porous-silicon (SOPS) strip waveguides with high-index contrast using focused proton-beam irradiation and electrochemical etching. Smooth surface quality with rms roughness of 3.1 nm is achieved for a fluence of 1x10(15)/cm(2) after postoxidation treatment. Optical characterization at a wavelength of 1550 nm shows a loss of 1.1+/-0.4 ...
متن کاملGas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber
One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings
سال: 2017
ISSN: 2504-3900
DOI: 10.3390/proceedings1040547